Skip to content

Smallest Sequence With Given Primes

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.graphs;

import java.util.*;

/ * ============================================================================================ * PROBLEM: Smallest sequence with given Primes * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * Given three prime numbers A, B, and C, and an integer D. * Find the first D integers (in ascending order) whose prime factors are limited * to the set {A, B, C}. * * --------------------- * 2. Logical Breakdown & Mathematical Formulation * --------------------- * We need to generate a sequence \(S\) where each element \(S[i]\) is of the form: * $\(S[i] = A^x \cdot B^y \cdot C^z\)$ * where \(x, y, z \ge 0\) (and at least one is \(> 0\) as we typically start from 1 * but the problem asks for the first D such integers, usually excluding 1). * * Algorithm (Three-Pointer Approach): * 1. Initialization: * - Create a result array res of size D. * - Maintain three pointers: pA, pB, pC, all initially at -1. * - These pointers track which element in res will be multiplied by A, B, or C next. * * 2. Iterative Generation: * - For each step \(i\) from 0 to D-1: * a. Calculate candidates: * - \(vA = (pA == -1 ? A : res[pA] * A)\) * - \(vB = (pB == -1 ? B : res[pB] * B)\) * - \(vC = (pC == -1 ? C : res[pC] * C)\) * b. The next smallest number is \(min(vA, vB, vC)\). * c. Store this minimum in res[i]. * d. Crucial Pointer Update*: * - If \(res[i] == vA\), increment pA. * - If \(res[i] == vB\), increment pB. * - If \(res[i] == vC\), increment pC. * - (Using if instead of else if handles duplicates like \(A \cdot B = B \cdot A\)). * * --------------------- * 3. Complexity Analysis * --------------------- * Time Complexity: O(D) * - We perform constant time work to generate each of the D numbers. * Space Complexity: O(D) * - To store the resulting sequence. * * ============================================================================================ / public class SmallestSequenceWithGivenPrimes { public int solve(int A) { // TODO: Implement solution return 0; }

public int[] solve(int i, int i1, int i2, int i3) {
    return new int[0];
}

}