Skip to content

Maximum Depth

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.graphs;

import java.util.*;

/* * ============================================================================================ * PROBLEM: Maximum Depth * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * Given a tree with A nodes rooted at 1. Each node has a specific value. * We need to answer Q queries (L, X): * - Find a node at level: targetLevel = L % (MaxDepth + 1) * - The node must have value >= X. * - If multiple such nodes exist, return the SMALLEST value. * - If no such node exists, return -1. * * --------------------- * 2. Logical Breakdown & Mathematical Formulation * --------------------- * Step 1: Level Mapping (Preprocessing) * - Use DFS or BFS to traverse the tree and calculate the level of each node. * - Maintain a List of Lists (or Map): levels[d] contains the values of all nodes * at depth d. * - Calculate MaxDepth during this traversal. * * Step 2: Sorting for Binary Search * - For each depth d in the levels structure, sort the list of values. * - Sorting allows us to find the smallest value >= X using Binary Search (Lower Bound). * * Step 3: Query Processing * - For each query (L, X): * a. Calculate depth = L % (MaxDepth + 1). * b. Access the sorted list at levels[depth]. * c. Use Collections.binarySearch or a custom lowerBound function: * - If found, return the value. * - If not found (target > all elements), return -1. * * --------------------- * 3. Constraints & Complexity Analysis * --------------------- * Time Complexity: * - Preprocessing: O(A) for DFS + O(A log A) for sorting all level lists. * - Queries: O(Q log A) - binary search on the specific level list. * Total: O((A + Q) log A). * * Space Complexity: * O(A) to store the tree and the level-wise value lists. * * ============================================================================================ / public class MaximumDepth { public int solve(int A) { // TODO: Implement solution return 0; }

public int[] solve(int a, int[] b, int[] c, int[] d, int[] l, int[] x) {
    return new int[0];
}

}