First Depth First Search
Logical Breakdown
- [ ] Subproblem Identification:
- [ ] Optimal Substructure:
- [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
- [ ] Optimization: (Matrix Exponentiation if 'A' is huge)
Mathematical Rigor
State Definition
Let \(dp[i]\) be the state for the \(i\)-th subproblem.
Recurrence Relation
Visualization
Complexity Analysis
| Approach | Time Complexity | Space Complexity |
|---|---|---|
| Iterative DP | \(O(N)\) | \(O(1)\) |
Code Reference
package com.dsa.graphs;
import java.util.*;
/* * ============================================================================================ * PROBLEM: First Depth First Search (Reachability) * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * You are given N towns (1 to N). There are M one-way roads between towns. * You are given a starting town S and a destination town D. * Check if it is possible to reach town D from town S. * * --------------------- * 2. Logical Breakdown * --------------------- * Standard DFS Implementation. * * Recursive DFS(u): * 1. Mark 'u' as visited. * 2. If 'u' == Destination, return true. * 3. For each neighbor 'v' of 'u': * - If 'v' is not visited: * - If DFS(v) returns true, propagate true up the stack. * 4. Return false if no path found from 'u'. * * --------------------- * 3. Complexity * --------------------- * Time: O(V + E) * Space: O(V) (Recursion Stack + Visited Array) + O(E) (Graph Storage). * * ============================================================================================ / public class FirstDepthFirstSearch { public int solve(int A) { // TODO: Implement solution return 0; }
public int isReachable(int i, int[] from, int[] to, int i1, int i2) {
return 1;
}
}