Check Bipartite Graph
Logical Breakdown
- [ ] Subproblem Identification:
- [ ] Optimal Substructure:
- [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
- [ ] Optimization: (Matrix Exponentiation if 'A' is huge)
Mathematical Rigor
State Definition
Let \(dp[i]\) be the state for the \(i\)-th subproblem.
Recurrence Relation
Visualization
Complexity Analysis
| Approach | Time Complexity | Space Complexity |
|---|---|---|
| Iterative DP | \(O(N)\) | \(O(1)\) |
Code Reference
package com.dsa.graphs;
import java.util.*;
/* * ============================================================================================ * PROBLEM: Check Bipartite Graph * ============================================================================================ * * --------------------- * 2. Logical Breakdown * --------------------- * A graph is Bipartite if it contains no ODD length cycles. * * Algorithm (2-Coloring via BFS): * 1. Initialize color array with -1 (uncolored). * 2. For each uncolored node: * - Start BFS/DFS, color it 0. * - For every neighbor: * - If uncolored, give it opposite color (1 - current_color). * - If already colored and color is SAME as current, return 0 (Not Bipartite). * 3. Return 1 if all components are successfully colored. * ============================================================================================ / public class CheckBipartiteGraph { public int solve(int A) { // TODO: Implement solution return 0; }
public int isBipartite(int i, int[][] edges1) {
return 1;
}
}