Skip to content

Max Sum Without Adjacent Elements

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.dynamic_programming;

import java.util.*;

/ * Problem: Max Sum Without Adjacent Elements * Group: 11. Dynamic Programming */ / * ============================================================================================ * PROBLEM: Max Sum Without Adjacent Elements * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * Given a 2 x N grid of integers A. * Choose numbers to maximize sum such that no two numbers are adjacent. * * --------------------- * 2. Logical Breakdown * --------------------- * Key Observation: * Since we cannot pick adjacent elements, for any column 'i', we can pick at most ONE element. * (If we pick both top and bottom of column 'i', they are vertically adjacent). * * Simplification: * Let V[i] = max(A[0][i], A[1][i]). * The problem reduces to finding the max sum in array V such that no two elements are adjacent. * * Recurrence Relation (House Robber style): * Let dp[i] be the max sum considering columns 0 to i. * At column 'i', we have two choices: * 1. Exclude V[i]: Sum = dp[i-1] * 2. Include V[i]: Sum = V[i] + dp[i-2] (Must skip i-1) * * Formula: dp[i] = max(dp[i-1], V[i] + dp[i-2]) * * --------------------- * 3. Constraints & Complexity * --------------------- * Time: O(N) * Space: O(N) or O(1) optimized. * * ============================================================================================ */ public class MaxSumWithoutAdjacentElements { public int solve(int A) { // TODO: Implement solution return 0; }

public int adjacent(int[][] input1) {
    return 1;
}

}