Buying Candies
Logical Breakdown
- [ ] Subproblem Identification:
- [ ] Optimal Substructure:
- [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
- [ ] Optimization: (Matrix Exponentiation if 'A' is huge)
Mathematical Rigor
State Definition
Let \(dp[i]\) be the state for the \(i\)-th subproblem.
Recurrence Relation
Visualization
Complexity Analysis
| Approach | Time Complexity | Space Complexity |
|---|---|---|
| Iterative DP | \(O(N)\) | \(O(1)\) |
Code Reference
package com.dsa.dynamic_programming;
import java.util.*;
/ * Problem: Buying Candies * Group: 11. Dynamic Programming */ / * ============================================================================================ * PROBLEM: Buying Candies * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * Given arrays A (Candies in packet i) and B (Cost of packet i). * Given integer C (Total Money). * Find max candies you can buy. * Constraint: Unbounded (can buy same packet multiple times). * * --------------------- * 2. Logical Mapping * --------------------- * This is a direct application of the UNBOUNDED KNAPSACK problem. * - Value => A[i] (Number of Candies) * - Weight => B[i] (Cost) * - Capacity => C (Money) * * --------------------- * 3. Implementation Detail * --------------------- * dp[j] = Max candies with money 'j'. * Iterate j from 1 to C. * For each packet i: * if (cost[i] <= j) * dp[j] = max(dp[j], candies[i] + dp[j - cost[i]]) * * Time: O(N * C) * Space: O(C) * * ============================================================================================ */ public class BuyingCandies { public int solve(int A) { // TODO: Implement solution return 0; }
public int solve(int[] candies, int[] costs, int i) {
return 0;
}
}