Skip to content

Seats

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.heaps;

import java.util.*;

/ * ============================================================================================ * PROBLEM: Seats (Minimize Total Jumps to Cluster People) * ============================================================================================ * * --------------------- * 1. Logical Breakdown & Mathematical Formulation * --------------------- * We have indices of people \(P = \{p_1, p_2, ..., p_k\}\). We want to move them to * a contiguous range of seats \([start, start + k - 1]\). * * Step 1: Transformation to Median Problem * - If we move each person \(p_i\) to a position \(start + i\), the cost is \(|p_i - (start + i)|\). * - This can be rewritten as \(|(p_i - i) - start|\). * - Let \(y_i = p_i - i\). We now want to minimize \(\sum |y_i - start|\). * - Mathematically, the value of start that minimizes this sum is the Median* of * the array \(Y\). * * Step 2: Algorithm * 1. Traverse the string and store the indices of all 'x' in a list pos. * 2. If no 'x' or one 'x' exists, return 0. * 3. Find the median index: mid = pos.size() / 2. * 4. The person at pos.get(mid) will stay relatively in their place (the anchor). * 5. For every other person at pos.get(i), the number of jumps to reach the * cluster around the median is: * $\(Cost = |pos.get(i) - pos.get(mid)| - |i - mid|\)$ * 6. Sum all costs modulo \(10^7 + 3\). * * --------------------- * 2. Complexity Analysis * --------------------- * Time Complexity: * O(N) * - Single pass to find indices of 'x'. * - Single pass to calculate the total jumps from the median. * * Space Complexity: * O(N) * - To store the indices of the 'x' characters in the worst case (all 'x'). * * --------------------- * 3. Base Case Verification * --------------------- * - String with no 'x': Returns 0. * - String with all 'x' already together: Returns 0. * ============================================================================================ / public class Seats { public int solve(String A) { // TODO: Implement solution return 0; } }