Skip to content

Magician And Chocolates

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.heaps;

import java.util.*;

/* * ============================================================================================ * PROBLEM: Magician and Chocolates (Greedy with Max-Heap) * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * Given N bags with Bi chocolates. In each of the A units of time: * - The kid eats all chocolates in bag i. * - The magician refills bag i with floor(Bi / 2) chocolates. * Task: Maximize total chocolates eaten. Return result modulo 10^9 + 7. * * --------------------- * 2. Logical Breakdown & Mathematical Formulation * --------------------- * This is a Greedy problem. To maximize the sum, we must always pick the bag that * currently contains the maximum number of chocolates. * * Algorithm: * 1. Initialization: * - Use a Max-Priority Queue (PriorityQueue with Collections.reverseOrder()). * - Insert all N bag capacities into the heap. * * 2. Simulation (For A iterations): * - Extract the maximum element maxChoc from the heap. * - Add maxChoc to the running total (using modulo 10^9 + 7). * - Calculate the refill amount: refill = floor(maxChoc / 2). * - Insert refill back into the heap. * * 3. Finalization: * - Return the total accumulated chocolates. * * --------------------- * 3. Constraints & Complexity Analysis * --------------------- * Constraints: * 1 <= N <= 10^5 * 1 <= A <= 10^5 * 1 <= Bi <= 10^9 * * Time Complexity: * O(N log N + A log N) * - Building the heap: O(N log N). * - A operations of extract-max and insert: O(A log N). * * Space Complexity: * O(N) to store the heap elements. * ============================================================================================ / public class MagicianAndChocolates { public int solve(int A) { // TODO: Implement solution return 0; }

public int nchoc(int i, int[] b1) {
    return 1;
}

}