Skip to content

Kth Smallest Element In A Sorted Matrix

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.heaps;

/ * ============================================================================================ * PROBLEM: Kth Smallest Element in a Sorted Matrix (K-way Merge) * ============================================================================================ * * --------------------- * 1. Logical Breakdown & Mathematical Formulation * --------------------- * Given a matrix where A[i][j] <= A[i][j+1] (rows) and A[i][j] <= A[i+1][j] (cols). * We want the B-th smallest element. * * Step 1: Min-Heap Initialization * - Insert the first element of every row into a Min-Heap: {value, row, col}. * - The heap size will be exactly N (number of rows). * * Step 2: Extract and Advance * - Repeat B times: * 1. Extract the minimum element from the heap: {val, r, c}. * 2. If this is the B-th extraction, return val. * 3. Otherwise, if the extracted element has a successor in its row (c + 1 < M), * insert the next element from that row into the heap: {A[r][c+1], r, c+1}. * * --------------------- * 2. Complexity Analysis * --------------------- * Time Complexity: * O(min(B, N) + B log N) * - Initializing heap: O(N log N) or O(N). * - B extractions and insertions: O(B log N). * * Space Complexity: * O(N) to store the first element of each row in the Priority Queue. * * --------------------- * 3. Base Case Verification * --------------------- * - If B = 1: The heap extracts the very first element A[0][0], which is the absolute minimum. * - If B = NM: The algorithm will traverse all elements and return the largest at A[N-1][M-1]. * ============================================================================================ / public class KthSmallestElementInASortedMatrix { public int solve(int[][] a3, int A) { // TODO: Implement solution return 0; } }