Skip to content

Distribute Candy

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.heaps;

import java.util.*;

/* * ============================================================================================ * PROBLEM: Distribute Candy (Greedy Neighbors) * ============================================================================================ * * --------------------- * 1. Logical Breakdown & Mathematical Formulation * --------------------- * We must satisfy two conditions for every child i: * 1. \(C[i] \ge 1\) (At least one candy) * 2. If \(Rating[i] > Rating[i-1]\), then \(C[i] > C[i-1]\) * 3. If \(Rating[i] > Rating[i+1]\), then \(C[i] > C[i+1]\) * * Step 1: Left-to-Right Pass * - Initialize an array candies with 1 for all children. * - Iterate from 1 to N-1: * - If \(A[i] > A[i-1]\), set \(candies[i] = candies[i-1] + 1\). * - This ensures every child has more candies than their left neighbor if their * rating is higher. * * Step 2: Right-to-Left Pass * - Iterate from N-2 down to 0: * - If \(A[i] > A[i+1]\), the child needs more candies than the right neighbor. * - To satisfy both passes, set \(candies[i] = max(current\_candies[i], candies[i+1] + 1)\). * * Step 3: Result * - The sum of the candies array is the minimum total candies required. * * --------------------- * 2. Complexity Analysis * --------------------- * Time Complexity: * O(N) * - Two independent linear passes over the rating array. * * Space Complexity: * O(N) * - To store the candies count for each child. * * --------------------- * 3. Base Case Verification * --------------------- * - N=1: Only 1 child, returns 1 candy. * - All ratings equal: Each child gets 1 candy, total = N. * - Strictly increasing ratings: Candies will be [1, 2, 3, ..., N]. * ============================================================================================ / public class DistributeCandy { public int solve(int A) { // TODO: Implement solution return 0; }

public int candy(int[] a3) {
    return 0;
}

}