Skip to content

Ath Largest Element

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.heaps;

/* * ============================================================================================ * PROBLEM: Ath Largest Element in Subarrays [1 : i] * ============================================================================================ * * --------------------- * 1. Logical Breakdown & Mathematical Formulation * --------------------- * We need to find the Ath largest element dynamically as we iterate through array B. * * Step 1: Min-Heap as a Filter * - A Min-Heap of size A allows us to maintain the A largest elements. * - In such a heap, the root is the smallest of these A elements. * - This root is, by definition, the Ath largest element of the entire set * processed so far. * * Step 2: Stream Processing * 1. Initialize an empty Min-Priority Queue. * 2. Create a result array res of size N. * 3. For each index i from 0 to N-1: * a. If heap size < A: * - Add B[i] to the heap. * - If heap size is still < A, set res[i] = -1. * - If heap size reached A, set res[i] = heap.peek(). * b. If heap size == A: * - If B[i] > heap.peek(): * - The new element is larger than our current Ath largest. * - Remove the current smallest (heap.poll()) and add B[i]. * - res[i] = heap.peek(). * * --------------------- * 2. Complexity Analysis * --------------------- * Time Complexity: * O(N log A) * - We iterate through the array of size N. * - Each insertion/extraction in the heap takes O(log A) time. * * Space Complexity: * O(A) to store the top A elements in the Priority Queue. * * --------------------- * 3. Base Case Verification * --------------------- * - If i < A-1: The subarray has fewer than A elements, resulting in -1. * - If A = 1: The problem reduces to finding the running maximum of the array. * ============================================================================================ / public class AthLargestElement { public int[] solve(int A, int[] b3) { // TODO: Implement solution return new int[0]; } }