Max Sum Path In Binary Tree
Logical Breakdown
- [ ] Subproblem Identification:
- [ ] Optimal Substructure:
- [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
- [ ] Optimization: (Matrix Exponentiation if 'A' is huge)
Mathematical Rigor
State Definition
Let \(dp[i]\) be the state for the \(i\)-th subproblem.
Recurrence Relation
\[
dp[i] = ...
\]
Visualization
graph TD
A["Current State"] --> B["Previous State 1"]
A --> C["Previous State 2"]
Complexity Analysis
| Approach | Time Complexity | Space Complexity |
|---|---|---|
| Iterative DP | \(O(N)\) | \(O(1)\) |
Code Reference
package com.dsa.trees;
import java.util.*;
/* * Problem: Max Sum Path In Binary Tree * Group: 09. Trees / public class MaxSumPathInBinaryTree { public int solve(int A) { // TODO: Implement solution return 0; } }