Skip to content

SubsetsII

Logical Breakdown

  • [ ] Subproblem Identification:
  • [ ] Optimal Substructure:
  • [ ] Constraint Handling: (e.g., Modulo \(10^9 + 7\))
  • [ ] Optimization: (Matrix Exponentiation if 'A' is huge)

Mathematical Rigor

State Definition

Let \(dp[i]\) be the state for the \(i\)-th subproblem.

Recurrence Relation

\[ dp[i] = ... \]

Visualization

graph TD A["Current State"] --> B["Previous State 1"] A --> C["Previous State 2"]

Complexity Analysis

Approach Time Complexity Space Complexity
Iterative DP \(O(N)\) \(O(1)\)

Code Reference

package com.dsa.recursion;

import java.util.*;

/ * Problem: SubsetsII * Group: 07. Recursion */ / * ============================================================================================ * PROBLEM: Subsets II * ============================================================================================ * * --------------------- * 1. Problem Description * --------------------- * Given a collection of integers denoted by array A of size N that might contain duplicates, * return all possible subsets. * * Key Requirements: * 1. Elements in a subset must be in non-descending order. * 2. The solution set must not contain duplicate subsets. * 3. The subsets must be sorted lexicographically. * * --------------------- * 2. Logical Breakdown & Mathematical Formulation * --------------------- * Let S be the sorted version of input array A. * We need to generate the Power Set, but ensure that identical branches are not traversed twice. * * Algorithm (Backtracking with Duplicate Pruning): * 1. Sort the Array: * - Essential for two reasons: * a) Ensures elements inside subsets are non-descending. * b) Places duplicates adjacent to each other, making detection O(1). * * 2. Recursive Function generate(index, currentSubset): * - Add currentSubset to the global result list immediately (captures the "current state"). * - Iterate i from index to N-1: * a) Duplicate Check: * If i > index AND A[i] == A[i-1]: * SKIP this iteration. * (Explanation: The value A[i] is the same as the previous candidate A[i-1]. * Since we already processed all subsets starting with A[i-1] in the previous * loop iteration, processing A[i] now would create duplicate subsets.) * b) Include A[i] in currentSubset. * c) Recurse: generate(i + 1, currentSubset). * d) Backtrack: Remove A[i] from currentSubset. * * --------------------- * 3. Constraints & Complexity Analysis * --------------------- * Constraints: * 0 <= N <= 16 * * Time Complexity: * O(N * 2^N) * - In the worst case (all distinct elements), we generate 2^N subsets. * - Copying each subset takes O(N). * - Sorting takes O(N log N). * * Space Complexity: * O(N) - Recursion stack depth and current subset storage. * * --------------------- * 4. Input / Output Format * --------------------- * Input: * - Integer Array A. * * Output: * - A list of lists (2D vector) containing all unique subsets. * * --------------------- * 5. Examples * --------------------- * Input 1: A = [1, 2, 2] * Sort -> [1, 2, 2] * Recursion Trace: * - [] * - [1] * - [1, 2] (First '2') * - [1, 2, 2] (Second '2') * - [1, 2] (Second '2' skipped? No, inside recursion i advances. But back at [1] level, next loop skips 2nd 2). * - [2] (First '2') * - [2, 2] * - [2] (Second '2' skipped at root level) * * Result: [[], [1], [1, 2], [1, 2, 2], [2], [2, 2]] * * Input 2: A = [1, 1] * Result: [[], [1], [1, 1]] * * ============================================================================================ */ public class SubsetsII { public int solve(int A) { // TODO: Implement solution return 0; }

public ArrayList<ArrayList<Integer>> subsetsWithDup(ArrayList<Integer> input1) {
    return new ArrayList<>();
}

}